Open Access Open Access  Restricted Access Subscription or Fee Access

A note on the conditional distribution estimate in the functional single-index model for dependent data.

Fatima Akkal, Nadia Kadiri, Mustapha Meghnafi, Abbes Rabhi


The main objective of this paper is to estimate non-parametrically the conditional distribution when the sample is considered as an ®-mixing sequence. First of all, a kernel type estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Afterwards, we give an estimation of the quantiles by inverting this estimated cond-cdf, the asymptotic properties are stated when the observations are linked with a single-index structure. The pointwise almost complete convergence and the uniform almost complete convergence (with rate) of the kernel estimate of this model are established. This approach can be applied in time series analysis. For that, the whole observed time series has to be split into a set of functional data, and the functional conditional quantile approach can be employed both in foreseeing and building confidence prediction bands.


Conditional cumulative distribution, functional random variable, kernel estimator, nonparametric estimation, strong mixing processes.

Full Text:


Disclaimer/Regarding indexing issue:

We have provided the online access of all issues and papers to the indexing agencies (as given on journal web site). It’s depend on indexing agencies when, how and what manner they can index or not. Hence, we like to inform that on the basis of earlier indexing, we can’t predict the today or future indexing policy of third party (i.e. indexing agencies) as they have right to discontinue any journal at any time without prior information to the journal. So, please neither sends any question nor expects any answer from us on the behalf of third party i.e. indexing agencies.Hence, we will not issue any certificate or letter for indexing issue. Our role is just to provide the online access to them. So we do properly this and one can visit indexing agencies website to get the authentic information. Also: DOI is paid service which provided by a third party. We never mentioned that we go for this for our any journal. However, journal have no objection if author go directly for this paid DOI service.