Open Access Open Access  Restricted Access Subscription or Fee Access

Robust color traffic sign recognition algorithm based on steerable pyramid transform and extreme learning machine

S. El Margae, M. Ait Kerroum, Y. Fakhri


In this work a new traffic sign recognition method by integrating color information based on Steerable Pyramid Transform (SPT) and Extreme Learning Machine (ELM) is introduced. The main contribution of this paper is to explore the usefulness of SPT at different color spaces in a traffic sign recognition framework. Each color traffic sign image is described by a subset of band filtered images containing steerable pyramid coefficients which characterize the traffic sign textures. Linear discriminant analysis is used to reduce the data dimensionality to generate relevant features. These reduced features are used as the input to ELM classifier to analytically learn an optimal model. This work can be a stepping stone for further research in this direction. Experiments on German Traffic Sign Recognition Benchmark (GTSRB) and Belgium Traffic Sign Classification Benchmark (BTSCB) databases demonstrate that our proposed method color SPT-ELM can serve as an effective and reasonable feature extraction tool, and achieve good and fast recognition accuracy. In addition, comparisons against some state-of-the-art methods prove the effectiveness and the superiority of the proposed approach for color traffic sign recognition and it is more adequate for real-time application.


Traffic sign recognition, Steerable Pyramid Transform, Linear discriminant analysis, Extreme learning machine, multi-resolution analysis.

Full Text:


Disclaimer/Regarding indexing issue:

We have provided the online access of all issues and papers to the indexing agencies (as given on journal web site). It’s depend on indexing agencies when, how and what manner they can index or not. Hence, we like to inform that on the basis of earlier indexing, we can’t predict the today or future indexing policy of third party (i.e. indexing agencies) as they have right to discontinue any journal at any time without prior information to the journal. So, please neither sends any question nor expects any answer from us on the behalf of third party i.e. indexing agencies.Hence, we will not issue any certificate or letter for indexing issue. Our role is just to provide the online access to them. So we do properly this and one can visit indexing agencies website to get the authentic information. Also: DOI is paid service which provided by a third party. We never mentioned that we go for this for our any journal. However, journal have no objection if author go directly for this paid DOI service.