Superpixel Segmentation with Contour Adherence using Spectral Clustering, Combined with Normalized cuts (N-Cuts) in an Iterative k-Means Clustering Framework (NKSC).
Abstract
The structure Superpixel segmentation methods are generally used as a pre-processing step to speed up image processing tasks. They group the pixels of an image into homogeneous regions while trying to respect existing contours. In this paper, we propose a fast Superpixels segmentation algorithm with Contour Adherence using spectral clustering, combined with normalized cuts in an iterative k-means clustering framework. It produces compact and uniform superpixels with low computational costs. Normalized cut is adapted to measure the color similarity and space proximity between image pixels. We have used a kernel function to estimate the similarity metric. Kernel function maps the pixel values and coordinates into a high dimensional feature space. The objective functions of weighted K-means and normalized cuts share the same optimum point in this feature space. So it is possible to optimize the cost function of normalized cuts by iteratively applying simple K-means clustering algorithm. The proposed framework produces regular and compact superpixels that adhere to the image contours.
On segmentation comparison benchmarks it proves to be equally well or better than the state-of-the-art super pixel segmentation algorithms in terms of several commonly used evaluation metrics in image segmentation. In addition, our method is computationally very efficient and its computational complexity is linear.
Full Text:
PDFRefbacks
- There are currently no refbacks.
Disclaimer/Regarding indexing issue:
We have provided the online access of all issues and papers to the indexing agencies (as given on journal web site). It’s depend on indexing agencies when, how and what manner they can index or not. Hence, we like to inform that on the basis of earlier indexing, we can’t predict the today or future indexing policy of third party (i.e. indexing agencies) as they have right to discontinue any journal at any time without prior information to the journal. So, please neither sends any question nor expects any answer from us on the behalf of third party i.e. indexing agencies.Hence, we will not issue any certificate or letter for indexing issue. Our role is just to provide the online access to them. So we do properly this and one can visit indexing agencies website to get the authentic information. Also: DOI is paid service which provided by a third party. We never mentioned that we go for this for our any journal. However, journal have no objection if author go directly for this paid DOI service.