Open Access Open Access  Restricted Access Subscription or Fee Access

Predicting a Stock Portfolio with the Multivariate Bayesian Structural Time Series Model: Do News or Emotions Matter?

S. Rao Jammalamadaka, Jinwen Qiu, Ning Ning


In this paper, we provide methods for creatively incorporating information from financial news and Twitter feeds into predicting the prices of a portfolio of stocks, using the framework of the Multivariate Bayesian Structural Time Series (MBSTS) model. MBSTS is a Bayesian machine learning model designed to capture correlations among multiple target time series, while using a number of contemporaneous predictors. As an illustration of the current model, we use data on two leading online commerce companies, namely Amazon and eBay, and run extensive empirical experiments to examine which if any, text mining predictors would add to the predictability of a stock price. Evaluation of competing models such as the autoregressive integrated moving average (ARIMA) model, and the recurrent
neural network (RNN) model with long short term memory (LSTM), in terms of their performances with respect to cumulative one-step-ahead forecast errors with and without sentimental predictors, were carried out. Our contributions are threefold: Firstly, our model is the first one that successfully incorporated the online text mining to an advanced multivariate Bayesian machine learning time series model, which opens the door of applying both text mining and machine learning simultaneously in modern quantitative finance research; Secondly, under the presence of both modern and classical predictors in both fundamental and technical sense, the polarity of news still adds on a complementary effect; Thirdly, we discover that all models under investigation with sentimental predictors do outperform models without these sentimental predictors, and the MBSTS model with sentimental predictors outperforms all the other models.


Feature Selection, Time Series Forecast, Text Mining, Sentiment Analysis.

Full Text:


Disclaimer/Regarding indexing issue:

We have provided the online access of all issues and papers to the indexing agencies (as given on journal web site). It’s depend on indexing agencies when, how and what manner they can index or not. Hence, we like to inform that on the basis of earlier indexing, we can’t predict the today or future indexing policy of third party (i.e. indexing agencies) as they have right to discontinue any journal at any time without prior information to the journal. So, please neither sends any question nor expects any answer from us on the behalf of third party i.e. indexing agencies.Hence, we will not issue any certificate or letter for indexing issue. Our role is just to provide the online access to them. So we do properly this and one can visit indexing agencies website to get the authentic information. Also: DOI is paid service which provided by a third party. We never mentioned that we go for this for our any journal. However, journal have no objection if author go directly for this paid DOI service.