Open Access Open Access  Restricted Access Subscription Access

Modified Influential Observation Detection in Bayesian Regression Using Conjugate Prior Distribution

S. Turkan, G. Ozel

Abstract


The influential observations has long been one of the most concern in the statistical structure to researchers. A Bayesian approach to multivariate linear regression is known as Bayesian multivariate linear regression analysis in which the predicted outcome is a vector of correlated random variables rather than a single scalar random variable. In this study, influential observation diagnostics based on case deletion approach with the ith case deleted are examined for the Bayesian regression analysis. For this aim, Welsch-Kuh distance, Cook’s distance, and the Hadi measure which are major case deletion diagnostics in linear regression is modified for the Bayesian regression using conjugate prior distribution. To show the performance of proposed diagnostics on detection influential observations in the Bayesian regression analysis using conjugate prior distribution, the pavement data is used.

Keywords


Bayesian regression, diagnostics, influential observations, prior information.

Full Text:

PDF


Disclaimer/Regarding indexing issue:

We have provided the online access of all issues and papers to the indexing agencies (as given on journal web site). It’s depend on indexing agencies when, how and what manner they can index or not. Hence, we like to inform that on the basis of earlier indexing, we can’t predict the today or future indexing policy of third party (i.e. indexing agencies) as they have right to discontinue any journal at any time without prior information to the journal. So, please neither sends any question nor expects any answer from us on the behalf of third party i.e. indexing agencies.Hence, we will not issue any certificate or letter for indexing issue. Our role is just to provide the online access to them. So we do properly this and one can visit indexing agencies website to get the authentic information.