MC-Kmeans: an Approach to Cell Image Segmentation Using Clustering Algorithms
Abstract
Digital image processing has been a fundamental tool for the diagnostic and treatment of diseases. Several techniques have been used to analyze microscopic images in cell-level processes. Different methods for the segmentation task are recognized for its contribution in the image processing. Nevertheless, not all are useful in the studies at a microscopic level. In most of the biomedical images, cells are visually clustered and this makes that, simple and fast algorithms which are used in the other cases, may fail. This research proposes the development of a segmentation algorithm in HEp-2 cells type, using the marker-controlled watershed and k-means methods. This approach achieves an improvement in the cell segmentation, which allows obtaining effective information in the posterior analysis. We obtained a precision of 82.3% in the performance and in the qualitative analysis the method reached an outstanding performance in comparison with the other segmentation techniques used in the experiments. Finally, we concluded that the algorithm proposed, is suitable for the segmentation of the studied cells.
Keywords
Full Text:
PDFDisclaimer/Regarding indexing issue:
We have provided the online access of all issues and papers to the indexing agencies (as given on journal web site). It’s depend on indexing agencies when, how and what manner they can index or not. Hence, we like to inform that on the basis of earlier indexing, we can’t predict the today or future indexing policy of third party (i.e. indexing agencies) as they have right to discontinue any journal at any time without prior information to the journal. So, please neither sends any question nor expects any answer from us on the behalf of third party i.e. indexing agencies.Hence, we will not issue any certificate or letter for indexing issue. Our role is just to provide the online access to them. So we do properly this and one can visit indexing agencies website to get the authentic information. Also: DOI is paid service which provided by a third party. We never mentioned that we go for this for our any journal. However, journal have no objection if author go directly for this paid DOI service.